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Abstract 

Abstract—We propose a system that is capable of detailed analysis of eye region images in terms of the position of the
iris, degree of eyelid opening, and the shape, complexity, and texture of the eyelids. The system uses a generative eye
region model that parameterizes the fine structure and motion of an eye. The structure parameters represent structural
individuality of the eye, including the size and color of the iris, the width, boldness, and complexity of the eyelids, the
width of the bulge below the eye, and the width of the illumination reflection on the bulge. The motion parameters
represent movement of the eye, including the up-down position of the upper and lower eyelids and the 2D position of the
iris. The system first registers the eye model to the input in a particular frame and individualizes it by adjusting the
structure parameters. The system then tracks motion of the eye by estimating the motion parameters across the entire
image sequence. Combined with image stabilization to compensate for appearance changes due to head motion, the
system achieves accurate registration and motion recovery of eyes.

Back to Top

1. Introduction 
In facial image analysis for expression and identity recognition, eyes are particularly important [1], [2], [3], [4]. Gaze
tracking plays a significant role in human-computer interaction [5], [6] and the eye region provides useful biometric
information for face and intention recognition [7], [8]. The Facial Action Coding System (FACS [9]), the de facto
standard for coding facial muscle actions in behavioral science [10], defines many action units (AUs) for eyes [11], [12].

Automated analysis of facial images has found eyes still to be a difficult target [13], [14], [15], [16], [17], [18], [19], [20],
[21]. The difficulty comes from the diversities in the appearance of eyes due to both structural individuality and motion
of eyes, as shown in Fig. 1. Past studies have failed to represent these diversities adequately. For example, Tian et al. [22]
used a pair of parabolic curves and a circle as a generic eye model, but parabolic curves have too few parameters to
represent the complexity of eyelid shape and motion. Statistical models have been deployed to represent such individual
differences for the whole eye region [23], [24], [25], but not for subregions, such as the eyelids, due in part to limited
variation in training samples. 

Fig. 1. Diversity in the appearance of eye images. (a) Variance from structural individuality. (b) Variance from motion of
a particular eye.

In this paper, we propose and evaluate a generative eye region model that can meticulously represent the detailed
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appearance of the eye region for eye motion tracking. The model parameterizes both the structural individualities and the
motions of eyes. Structural individualities include the size and the color of the iris, the width and the boldness of the
eyelid, which may have a single or double fold, the width of the bulge below the eye, the furrow below it, and the width
of illumination reflection on the bulge. Eye motion includes the up-down positions of upper and lower eyelids and the 2D
position of the iris. The input image sequence first is stabilized to compensate for appearance change due to head motion.
The system then registers the eye region model to the input eye region and individualizes it by adjusting the structure
parameters and accurately tracks the motion of the eye.

Back to Top

2. Eye Region Model 
We define a rectangular region around the eye as an eye region for analysis. We exploit a 2D, parameterized, generative
model that consists of multiple components corresponding to the anatomy of an eye. These components include the iris,
upper and lower eyelids, a white region around the iris (sclera), dark regions near the inner and outer corners of the white
region, a bulge below the lower eyelid, a bright region on the bulge, and a furrow below the bulge (the infraorbital 
furrow). The model for each component is rendered in a separate rectangular layer. When overlaid, these layers represent
the eye region as illustrated in Fig. 2. Within each layer, pixels that render a component are assigned color intensities or
transparency so that the color in a lower layer appears in the final eye region model if all the upper layers above it have
transparent pixels at the same locations. For example, the iris layer (the third layer from the bottom) has a circular region
to represent the iris. The eyelid layer (the fourth layer, one above the iris layer) has two curves to represent upper and
lower eyelids, in which the region between those curves (palpebral fissure) is transparent while the region above the
upper curve and the region below the lower curve are filled with skin color. When the eyelid layer is superimposed over
the iris layer, only the portion of the circular region between the eyelid curves appears in the final eye region image while
the rest is occluded by the skin pixels in the eyelid layer. When the upper curve in the eyelid layer is lowered,
corresponding to eyelid closure, a greater portion of the circular region in the iris layer is occluded.

Fig. 2. Multilayered 2D eye region model.

Table 1 shows the eye components represented in the multilayered eye region model along with their control parameters.
We call parameters $d_u$ , $f$ , $d_b$ , $d_r$ , $r_i$ , and $I_{\gamma 7}$ the structure parameters (denoted by
${\bf{s}}$ ) that define the static and structural detail of an eye region model, while we call parameters $\nu_{height}$ , 
$\nu_{skew}$ , $\lambda_{height}$ , $\eta_x$ , and $\eta_y$ the time-dependent motion parameters (denoted by 
${\bf{m}}_t$ , $t$ : time) that define the dynamic detail of the model. The eye region model defined and constructed by
the structure parameters ${\bf{s}}$ and the motion parameters ${\bf{m}}_t$ is denoted by 
$T({\bf{x}};{\bf{s}},{\bf{m}}_t)$ , where ${\bf{x}}$ denotes pixel positions in the model coordinates. Table 2 and 
Table 3 show examples of the appearance changes due to the different values of ${\bf{s}}$ and ${\bf{m}}_t$ in the eye 
region model $T({\bf{x}};{\bf{s}},{\bf{m}}_t)$ . 

TABLE 1. Detailed Description of the Eye Region Model

TABLE 2. Appearance Changes Controlled by Structure Parameters
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TABLE 3. Appearance Changes Controlled by Motion Parameters

2.1 Upper Eyelid

The upper eyelid is a skin region that covers the upper area of the palpebral fissure (the eye aperture). It has two
descriptive features: 1) a boundary between the upper eyelid and the palpebral fissure and 2) a furrow running nearly in
parallel to the boundary directly above the upper eyelid. 

The model represents these features by two polygonal curves (curve1 and curve2) and the region (region1) surrounded by
them. Both curve1 and curve2 consist of $N_u$ vertices denoted by ${\bf{u}}_1$ and ${\bf{u}}_2$ , respectively 
(Table 1). 

2.1.1 Structure of Upper Eyelid

To represent the distance between the boundary and the furrow, parameter $d_u$ [0 1] gives the ratio to the predefined
maximum distance between curve1 and curve2. When curve1 and curve2 coincide ($d_u=0$ ), the upper eyelid appears 
to be a uniform region, which we refer to as a single eyelid fold. Single eyelid folds are common in East Asians.
"Boldness" parameter $f$ [0 1] controls both the intensity $I_{r 1}$ of region1 and the line width $w_{c2}$ of curve2, 
simultaneously by $I_{r 1}= I_{r 1}^{brightest}-\beta_1\cdot f$ and $w_{c2}=\beta_2\cdot f+w^{thickest}_{c2}$
($\beta_1,\beta_2$ : constant). The appearance changes controlled by $d_u$ and $f$ are shown in Table 2. 

2.1.2 Motion of Upper Eyelid

When an upper eyelid moves up and down in its motion (e.g., blinking), the boundary between the upper eyelid and the
palpebral fissure moves up and down. The model represents this motion by moving the vertices of curve1 (${\bf{u}}_1$
). They move between the predefined curve for a completely open eye (${\bf{u}}_1^{top}$ ) and that for a closed eye 
(${\bf{u}}_1^{bottom}$ ), as shown in Fig. 3. Parameter $\nu_{height}$ [0 1] specifies the position of curve1 within
this range and, thus, the $i\rm th$ vertex position of curve1 (${\bf{u}}_{1i}$ ) is defined by parameter $\nu_{height}$
as, 

$$\eqalign{{\bf{u}}_{1i}=&\sin\left({{\pi}\over{2}}\cdot \nu_{height}\right)\cdot 
{\bf{u}}^{top}_{1i}\cr&+\left(1-\sin\left({{\pi}\over{2}}\cdot\nu_{height}\right)\right)\cdot 
{\bf{u}}^{bottom}_{1i},}$$

(1)

where ${\bf{u}}^{top}_{1i}$ and ${\bf{u}}^{bottom}_{1i}$ are the positions of the $i\rm th$ vertices of 
${\bf{u}}^{top}_1$ and ${\bf{u}}^{bottom}_1$ , respectively. The sinusoidal term in (1) moves the vertices rapidly
when $\nu_{height}$ is small and slowly when $\nu_{height}$ is large with respect to the linear change of
$\nu_{height}$ . This corresponds to the possible rapid movement of the upper eyelid when it lowers in motion such as
blinking. 

Fig. 3. The up-down position of curve1.
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The furrow on the upper eyelid also moves together with the boundary. The model represents this motion by moving the
vertices of curve2 (${\bf{u}}_2$ ). The positions of the vertices of curve2 (${\bf{u}}_2$ ) are defined by using 
parameters $\nu_{height}$ and $d_u$ such that they move in parallel to curve1 (${\bf{u}}_1$ ) when $\nu_{height}$ is 
larger than a preset threshold $\nu_{height}^T$ or move slowly keeping the distance between curve1 and curve2 wide
otherwise. 

If $\nu_{height}$ is larger than $\nu_{height}^T$ , then 

$$\eqalignno{u^x_{2i}&=u^x_{1i},&(2)\cr u^y_{2i}&=u^y_{1i}-\left(\alpha_1 \cdot {{|u^x_{1i}-{\bar 
u}^x_1|}\over{|u^x_{11}- {\bar u}^x_1|}}+\alpha_2\right)\cdot d_u,&(3)\cr \bar 
u^x_1&={{u^x_{11}+u^x_{1N_u}}\over{2}}}$$

else

$$u^x_{2i}=\left(1-\gamma_{d_u,\nu_{height}}\right)\cdot 
u^{x,\nu_{height}=\nu^T_{height}}_{1i}+\gamma_{d_u,\nu_{height}}\cdot u^{x,bottom}_{1i},$$

(4)

$$u^y_{2i}=\left(1-\gamma_{d_u,\nu_{height}}\right)\cdot \tilde 
u^{y,\nu_{height}=\nu^T_{height}}_{1i}+\gamma_{d_u,\nu_{height}}\cdot \tilde u^{y,bottom}_{1i},$$

(5)

$$\gamma_{d_u,\nu_{height}}=\left(1-{{\nu_{height}}\over{\nu^T_{height}}}\right)\cdot(1-d_u),$$

$$\tilde u^y_{1i}=u^y_{1i}-\left(\alpha_1\cdot{{|u^x_{1i}-{\bar u}^x_1|}\over{|u^x_{11}-{\bar 
u}^x_1|}}+\alpha_2\right)\cdot d_u,$$

end if 

where $\alpha_1$ and $\alpha_2$ are constant. 

Fig. 4. The horizontal skew of curve1.

The boundary also appears skewed horizontally when the eye is not straight to the camera because it is on a spherical
eyeball. The model represents it by horizontally skewing curve1 by using parameter $\nu_{skew}$ [0 1]. As shown in 
Fig. 4, the vertices of curve1 (${\bf{u}}_1$ ) defined by (1) are transformed into the skewed positions
(${\bf{u}}^{skewed}_1$ ) under orthographic projection, where $C$ denotes the center of the eyeball and $\theta$
defines the opening of the eye. The coordinate of $C$ in the $x_{eye}-z_{eye}$ plane is 

$$\eqalignno{C_{x_{eye}}&=\left(u^{x_{eye}}_{1N_u}+u^{x_{eye}}_{11}\right)/2,&(6)\cr 
C_{z_{eye}}&=C_{x_{eye}}\cdot\tan\theta.&(7)}$$

The coordinates of ${\bf{u}}_{1i}$ projected onto the spherical surface, 
$\left(u^{x_{eye}}_{1i},u^{z_{eye}}_{1i}\right)$ , should satisfy (8), with $r$ being the radius of the sphere:

$$\left(u^{x_{eye}}_{1i}-C_{x_{eye}}\right)^2+\left(u^{z_{eye}}_{1i}-C_{z_{eye}}\right)^2=r^2.$$
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(8)

The $x$ coordinate of horizontally skewed positions of ${\bf{u}}_{1i}$ ($u^{skewed,x}_{1i}$ ) in the $x\hbox{-}z$
plane is obtained as 

$$u^{skewed,x}_{1i}=u^{x_{eye}}_{1i}\cdot\cos(\nu_{skew})+\left|u^{z_{eye}}_{1i}\right|\cdot\sin(\nu_{skew}).$$

(9)

The first two rows of Table 3 shows examples of the appearance changes due to parameters $\nu_{height}$ and 
$\nu_{skew}$ . 

2.2 Lower Eyelid

A lower eyelid is a skin region that covers the lower area of the palpebral fissure. It has four descriptive features: 

1. a boundary between the lower eyelid and the palpebral fissure, 

2. a bulge below the boundary, which results from the shape of the covered portion of the eye, shortening of the
inferior portion of the orbicularis oculi muscle (a sphincter muscle around the eye) on its length, and the
effects of gravity and aging, 

3. an infraorbital furrow parallel to and below the lower eyelid, running from near the inner corner of the eye
and following the cheek bone laterally [9], and

4. a brighter region on the bulge, which is mainly caused by the reflection of illumination.

As shown in Table 1, the model represents these features by four polygonal curves (curve3, curve4, curve5, and curve6)
and two regions (region2 surrounded by curve3 and curve4 and region3 surrounded by curve3 and curve6). Curve3,
curve4, and curve6 consist of $N_l$ vertices and are denoted by ${\bf{l}}_1$ , ${\bf{l}}_2$ , and ${\bf{l}}_4$ , 
respectively. Curve5 is the middle portion of curve4, consisting of $N_f$ vertices denoted by ${\bf{l}}_3$ . 

2.2.1 Structure of Lower Eyelid

Distance ratio parameter $d_b$ [0 1] controls the distance between curve3 and curve4. The vertices of curve4
(${\bf{l}}_2$ ) have the predefined positions for both the thinnest bulge (${\bf{l}}_2^{top}$ ) and the thickest bulge 
(${\bf{l}}^{bottom}_2$ ), as shown in Fig. 5. The positions of the $j\rm th$ vertex of ${\bf{l}}_2$ are defined by using 
parameter $d_b$ as 

$${\bf{l}}_{2j}=d_b\cdot {\bf{l}}^{bottom}_{2j}+(1-d_b)\cdot{\bf{l}}^{top}_{2j},$$

(10)

where ${\bf{l}}^{top}_{2j}$ and ${\bf{l}}^{bottom}_{2j}$ are the positions of the $j\rm th$ vertices of 
${\bf{l}}^{top}_2$ and ${\bf{l}}^{bottom}_2$ , respectively. 

Fig. 5. The model for a lower eyelid.

Distance ratio parameter $d_r$ [0 1] controls the distance between curve3 and curve6. The position of the $j\rm th$
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vertex of ${\bf{l}}_4$ is defined by using ${\bf{l}}_1$ , ${\bf{l}}_2$ , and parameter $d_r$ as 

$${\bf{l}}_{4j}=d_r\cdot{\bf{l}}_{2j}+(1-d_r)\cdot{\bf{l}}_{1j}.$$

(11)

2.2.2 Motion of Lower Eyelid

When the lower eyelid moves up or down (e.g., eyelid tightening), the boundary between the lower eyelid and the
palpebral fissure moves, correspondingly changing in area. The bulge, the infraorbital furrow, and the brighter region on 
the bulge also move together with the boundary.

Our model represents this motion by moving the vertices of curve3, curve5, and curve6. The vertices of curve3 have
predefined positions for both the highest (${\bf{l}}^{top}_1$ ) and the lowest (${\bf{l}}^{bottom}_1$ ). Parameter 
$\lambda_{height}$ [0 1] gives the position within this range. The position of the $j\rm th$ vertex of ${\bf{l}}_1$ is 
obtained using parameter $\lambda_{height}$ as 

$${\bf{l}}_{1j}=\lambda_{height}\cdot{\bf{l}}^{top}_{1j}+(1-\lambda_{height})\cdot{\bf{l}}^{bottom}_{1j},$$

(12)

where ${\bf{l}}^{top}_{1j}$ and ${\bf{l}}^{bottom}_{1j}$ are the positions of the $j\rm th$ vertices of 
${\bf{l}}^{top}_{1}$ and ${\bf{l}}^{bottom}_{1}$ , respectively. Likewise, parameter $\lambda_{height}$ controls 
the positions of ${\bf{l}}_2$ , ${\bf{l}}^{top}_2$ , and ${\bf{l}}^{bottom}_2$ in (10). 

$${\bf{l}}^{top}_{2j}=\lambda_{height}\cdot 
{\bf{l}}^{top,t}_{2j}+(1-\lambda_{height})\cdot{\bf{l}}^{top,b}_{2j},$$

(13)

$${\bf{l}}^{bottom}_{2j}=\lambda_{height}\cdot 
{\bf{l}}^{bottom,t}_{2j}+(1-\lambda_{height})\cdot{\bf{l}}^{bottom,b}_{2j},$$

(14)

where $({\bf{l}}^{top,t}_{2j}, {\bf{l}}^{top,b}_{2j})$ and $({\bf{l}}^{bottom,t}_{2j}, {\bf{l}}^{bottom,b}_{2j})$
are the preset dynamic ranges for ${\bf{l}}^{top}_{2j}$ and ${\bf{l}}^{bottom}_{2j}$ . 

Parameter $\lambda_{height}$ also controls both the intensity of curve3 and that of curve5 ($I_{c3}$ and $I_{c5}$ ) by 
$I_{c3}=I^{brightest}_{c3}-\beta_3\cdot\lambda_{height}$ and 
$I_{c5}=I^{brightest}_{c5}-\beta_4\cdot\lambda_{height}$ ($\beta_3,\beta_4$ : constant). 

Table 3 shows examples of the appearance changes controlled by parameter $\lambda_{height}$ . 

2.3 Sclera

The sclera is the white portion of the eyeball. We limit it to the region that can be seen in the palpebral fissure, which is
surrounded by the upper eyelid and the lower eyelid. Our model represents the sclera by a region (region4) surrounded by
curve1 and curve3, which are defined to represent upper and lower eyelids, as shown in Table 1. 

When the upper eyelid and/or the lower eyelid move, the sclera changes its shape. Our model controls the change
indirectly by parameters $\nu_{height}$ , $\nu_{skew}$ , and $\lambda_{height}$ . These primarily control the 
appearance changes of the upper eyelid and the lower eyelid due to the motions. Parameter $\nu_{height}$ also controls 
the intensity of region4 by $I_{r4}=\beta_5\cdot\nu_{height}+I^{darkest}_{r4}$ ($\beta_5$ : constant). 

2.4 Corners
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Corners are regions at the medial (close to the midline) and lateral regions of the sclera. They are usually darker than
other parts of the sclera due to shadow and color of the caruncle (a small, red portion of the corner of the eye that
contains sebaceous and sweat glands). As shown in Table 1, our model represents the outer corner by a region surrounded
by three polygonal curves (curve1, curve3, and curve7) and the inner corner by curve1, curve3, and curve8. Both curve7
and curve8 consist of $N_c$ vertices, denoted by ${\bf{c}}_1$ and ${\bf{c}}_2$ , respectively. Fig. 6 depicts the details 
of the outer corner model.

Fig. 6. The model for the outer corner.

When the upper eyelid and/or the lower eyelid move, the shape of the eye corners changes. Our model controls the
motion of the upper and the lower boundaries by parameters $\nu_{height}$ , $\nu_{skew}$ , and $\lambda_{height}$
as mentioned. The $x$ coordinates of ${\bf{c}}_{12}$ and ${\bf{c}}_{13}$ are moved from predefined neutral
positions based on parameter $\nu_{skew}$ according to the horizontal proportion
$\overline{P{\bf{c}}_{12}}/\overline{PQ}$ and $\overline{P{\bf{c}}_{13}}/\overline{PQ}$ , respectively, and their 
$y$ coordinates are so determined as to keep the vertical proportions same.

2.5 Iris

The iris is a circular and colored region on the eyeball. The apparent color of the iris is mainly determined by reflection
of environmental illumination and the iris' texture and patterns including the pupil (an aperture in the center of the iris).
Our model represents the iris by a circular region, region7, as shown in Table 1. Parameter $r_i$ and parameter 
$I_{\gamma 7}$ control the radius and the variable single color of region7, respectively. The color of the iris is
represented as the average gray level inside the iris. 

The position of the iris center moves when gaze direction moves. Our model represents the motion by moving the vertex
of the center coordinate ($i_x,i_y$ ) of region7. It has predefined positions for gaze left ($i^l_x$ ), gaze right ($i^r_x$ ), 
gaze up ($i^u_y$ ), and gaze down ($i^d_y$ ), respectively. Parameters $\eta_x$ [0 1] and $\eta_y$ [0 1] give the 
position within these ranges as

$$i_x=\eta_x\cdot i^r_x+(1-\eta_x)\cdot i^l_x,$$

(15)

$$i_y=\eta_y\cdot i^u_y+(1-\eta_y)\cdot i^d_y.$$

(16)

Table 3 includes examples of the appearance changes due to parameters $\eta_x$ and $\eta_y$ . 

Back to Top

3. Model -Based Eye Image Analysis 
Fig. 7 shows a schematic overview of the whole process of a model-based eye region image analysis system. An input
image sequence contains facial behaviors of a subject. Facial behaviors usually accompany spontaneous head motions.
The appearance changes of facial images thus comprise both rigid 3D head motions and nonrigid facial actions.
Decoupling these two components is realized by recovering the 3D head pose across the image sequence and by
accordingly warping the faces to a canonical head pose (frontal and upright), which we refer to as the stabilized images.
Stabilized images are intended to include appearance changes due to facial expression only. Eye image analysis proceeds
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on these stabilized images. For a given stabilized image sequence, the system registers the eye region model to the input
in the initial frame and individualizes the model by adjusting the structure parameters ${\bf{s}}$ (Table 1). Motion of the 
eye is then tracked by estimating the motion parameters ${\bf{m}}_t$ across the entire image sequence. If the tracking
results at any time $t$ are off the right positions, the model is readjusted, otherwise we finally get the estimated motion
together with the structure of the eye.

Fig. 7. A schematic overview of the model-based eye image analysis system.

3.1 Head Motion Stabilization

We use a head tracker that is based on a 3D cylindrical head model [26]. Manually given the head region with the pose
and feature point locations (e.g., eye corners) in an initial frame, the tracker automatically builds the cylindrical model
and recovers 3D head poses and feature point locations across the rest of the sequence. The initial frame is selected such
that it has the most frontal and upright face in it. The tracker recovers full 3D rigid motions (three rotations and three
translations) of the head. The performance evaluation on both synthetic and real images has demonstrated that it can track
as large as 40 degrees and 75 degrees of yaw and pitch, respectively, within 3.86 degrees of average error.

As shown in Fig. 8, the stabilized face images cancel out most of the effect of 3D head pose and contain only the
remaining nonrigid facial expression.

Fig. 8. Automatic recovery of 3D head motion and image stabilization [26]. (a) Frames 1, 10, and 26 from original image
sequence. (b) Face tracking in corresponding frames. (c) Stabilized face images. (d) Localized face regions.

3.2 Individualization of Eye Region Model

The system first registers the eye region model to a stabilized face in an initial frame $t=0$ by scaling and rotating the 
model so that both ends of curve1 (${\bf{u}}_1$ ) of the upper eyelid coincide with the eye corner points in the image.
The initial frame is such a frame that contains a neutral eye (an open eye with the iris at the center), which may be
different from the initial frame used in head tracking. In the current implementation, the individualized structure
parameters ${\bf{s}}$ are obtained manually by using a graphical user interface and fixed across the entire sequence.
Example results of individualization with respect to each factor of the appearance diversities in Fig. 1 are shown in Table 
4. 

TABLE 4. Example Results of Structure Individualization
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3.3 Tracking of Eye Motion

The pixel intensity values of both the input eye region and the eye region model are
normalized prior to eye motion tracking so that they have the same average and standard
deviation. The motion parameters in the initial frame ${\bf{m}}_0$ are manually adjusted 

when the eye region model is individualized.

With the initial motion parameters ${\bf{m}}_0$ and the structure parameters ${\bf{s}}$ , the system tracks the motion 
of the eye across the rest of the sequence starting from $t=0$ to obtain ${\bf{m}}_t$ at all $t$ . The system tracks the 
motion parameters by an extended version of the Lucas-Kanade gradient descent algorithm [27], which allows the
template searched (the eye region model here) to deform while tracking. Starting with the values in the previous frame,
the motion parameters ${\bf{m}}_t$ at the current frame $t$ are estimated by minimizing the following objective
function $D$ : 

$$D=\sum\left[T({\bf{x}};{\bf{m}}_t+\delta{\bf{m}}_t)-I(W({\bf{x}};{\bf{p}}_t+\delta{\bf{p}}_t))\right]^2,$$

(17)

where $I$ is the input eye region image, $W$ is a warp from the coordinate system of the eye region model to that of the
eye region image, and ${\bf{p}}_t$ is a vector of the warp parameters that includes only translation in this
implementation. Structure parameters ${\bf{s}}$ do not show up in $T$ because they are fixed while tracking.

$\delta{\bf{m}}_t$ and $\delta{\bf{p}}_t$ are obtained by solving the simultaneous equations obtained from the
first-order Taylor expansion of (17) as explained in detail in the Appendix which can be viewed for free here.
${\bf{m}}_t$ and ${\bf{p}}_t$ are updated: 

$${\bf{m}}_t\leftarrow {\bf{m}}_t+\delta{\bf{m}}_t,\qquad {\bf{p}}_t\leftarrow {\bf{p}}_t+\delta{\bf{p}}_t.$$

(18)

The iteration process at a particular frame $t$ converges when the absolute values of $\delta{\bf{m}}_t$ and 
$\delta{\bf{p}}_t$ become less than the preset thresholds or the number of iterations reaches the maximum. The region
surrounded by curve1 (${\bf{u}}_1$ ) and curve3 (${\bf{l}}_1$ ) of the eyelids is used for the calculation process so
that more weight is placed on the structure inside the eye (the palpebral fissure) and other facial components (such as an
eyebrow) that may appear in the eye region will not interfere. When parameter $\nu_{height}$ is less than a preset 
threshold, the position of region7 ($\eta_x$ and $\eta_y$ ) is not updated because the iris is so occluded that its position
estimation is unreliable. Also, the warp parameters ${\bf{p}}_t$ are not updated when $\nu_{height}$ is less than a 
preset threshold because a closed (or an almost closed) eye appears to have only horizontal structure that gives only the
vertical position of the eye region reliably.

Back to Top

4. Experiments 
We applied the proposed system to 577 image sequences from two independently collected databases: the Cohn-Kanade
AU-coded Facial Expression Image Database [28] and the Ekman-Hager Facial Action Exemplars [29]. The subjects in
these databases are young adults and include both men and women of varied ethnic background. They wear no glasses or
other accessories that could occlude their faces. With few exceptions, head motion ranges from none (Ekman-Hager) to
small (Cohn-Kanade) and head pose is frontal. Image sequences were recorded using VHS or S-VHS video and digitized
into 640 by 480 gray scale or 16-bit color pixel arrays. Image sequences begin with a neutral or near-neutral expression
and end with a target expression (e.g., lower eyelids tightened). In Cohn-Kanade, image sequences are continuous (30
frames per second). In Ekman-Hager, they are discontinuous and include the initial neutral or near-neutral expression and
two each of low, medium, and high-intensity facial action sampled from a longer image sequence.

In the experiments reported here, we empirically chose the following parameter values for the eye model: $N_u\!=\!8$ , 
$N_l\!=\!11$ , $N_f=8$ , $\alpha_1=30$ , $\alpha_2=40$ , $\beta_1=20$ , $\beta_2=10$ , $\beta_3=80$ , $\beta_4=30$ , 
$\beta_5=70$ , $I^{brightest}_{r 1}=160$ , $I^{brightest}_{c3}=160$ , $I^{brightest}_{c5}=130$ , $I^{darkest}_{r 
4}=120$ , $w^{thickest}_{c2}=5$ , and $\theta=\pi/6$ . The initialization for tracking was done to the first neutral or
near-neutral expression frame in each sequence. The system generates the eye region model as a graphic image with a
particular resolution. Because the size and positions of the graphics objects (e.g., lines) are specified in integers, the
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resolution and sharpness of the graphic images must be high enough for the model to represent the fine structures of an
eye region. In our initial implementation, resolution was set at 350 by 250 pixels. The system then registered the model to
the input eye region by scaling and rotating it as explained in Section 3.2. We examined the results for diverse static eye
structures and for the whole range of appearance changes from the neutral to the utmost intensities in dynamic motion.

4.1 Cohn-Kanade AU-Coded Facial Expression Image Database

This database was collected by the Carnegie Mellon and University of Pittsburgh group. A large part of this database has
been publicly released. For this experiment, we used 490 image sequences of facial behaviors from 101 subjects, all but
one of which were from the publicly released subset of the database. The subjects are adults that range from 18 to 50
years old with both genders (66 females and 35 males) and a variety of ethnicities (86 Caucasians, 12 African Americans,
1 East Asian, and two from other groups). Subjects were instructed by an experimenter to perform single AUs and their
combinations in an observation room. Their facial behavior was then manually FACS labeled [9]. Image sequences that
we used in this experiment began with a neutral face and had out-of-plane motion as large as 19 degrees.

4.2 Ekman-Hager Facial Action Exemplars

This database was provided by Ekman at the Human Interaction Laboratory, University of California San Francisco,
whose images were collected by Hager, Methvin, and Irwin. For this experiment, we used 87 image sequences from 18
Caucasian subjects (11 females and 7 males). Some sequences have large lighting changes between frames. For these, we
normalized the intensity so as to keep the average intensity constant throughout the image sequence. Each image
sequence in this database consists of six to eight frames that were sampled from a longer sequence. Image sequences
begin with neutral expression (or a weak facial action) and end with stronger facial actions.

Back to Top

5. Results and Evaluation 
We used both qualitative and quantitative approaches to evaluate system performance. Qualitatively, we evaluated the
system's ability to represent the upper eyelids, localize and track the iris, represent the infraorbital furrow, and track 
widening and closing of the eyelids. Successful performance ensures that the system is robust to ethnic and cosmetic
differences in eyelid structure (e.g., single versus double fold) and features that would be necessary for accurate action
unit recognition (direction of gaze, infraorbital furrow motion, and eyelid widening and closing). In quantitative
evaluation, we investigated system performance with respect to resolution and sharpness of input eye region images,
initialization, and complexity of the eye model. 

5.1 Examples

Of the total 577 image sequences with 9,530 frames, the eye region model failed to match well in only five image
sequences (92 frames total duration) from two subjects. One of the sequences contained relatively large and rapid head
motion (approximately 20 degrees within 0.3 seconds) not otherwise present in either database. This motion caused
interlacing distortion in the stabilized image that was not parameterized in the model. The other four error cases from a
second subject were due to limitations in individualization as discussed below.

5.1.1 Upper Eyelids

A most likely failure would be that a curve of the upper eyelid model matches with the second (upper) curve of a
double-fold eyelid in the input when they have similar appearance. As shown in Table 5b, our system was not 
compromised by such double-fold eyelids. Note that these eye region images shown in the table are after the image
stabilization. The face itself moves in the original image sequence. (This is true with the subsequent tables through Table 
10.) 

TABLE 5. Example Results for a Variety of Upper Eyelids

When an upper eyelid appears thick due to cosmetics, eyelashes, or shadow, a model with a single thin line could match
mistakenly at many locations within the area of thickness. Such errors did not occur; by considering boldness of the upper
eyelids as a variable, our system was able to track the correct positions of upper eyelids, as shown in Table 5c. 

Some subjects had double-fold eyelids that appeared single-folded when the face was at rest (i.e., neutral expression). In
these cases, the second (hidden) curves were revealed when the eyelids began to widen or narrow, which unfolded the
double-fold. The boldness parameter absorbed this "revealing effect" and the system was able to track correctly the upper
eyelid contour, as shown in Table 5d. 
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5.1.2 Irises

A most likely failure in tracking irises would be for an iris model to match another dark portion in the eye region, such as
shadow around the hollow between the inner corner of the eye and the root of the nose. An especially bright iris could
contribute to this type of error. This situation could happen if one were to try to find the location of the iris by finding
only a circular region with a fixed dark color (e.g., Tian et al. [22]). Because our method uses a whole eye region as a
pattern in matching and includes color and size of the irises as variables, the system was able to track the positions of
irises accurately over a wide range of brightness, as shown in Table 6a. 

TABLE 6. Example Results for Irises of Different Colors

5.1.3 Bulge with Reflection Below the Eye

A most likely failure would be that a curve of the lower eyelid model matches with the lower edge of the bulge or the
infraorbital furrow. This could occur when the appearance of a bright bulge and the furrow below it are similar to that of
the sclera with a lower eyelid curve below it. By considering the bulge, the illumination reflection on the bulge, and the
infraorbital furrow in modeling the appearance below the eye, our system tracked lower eyelids accurately, as shown in
Table 7. 

TABLE 7. Example Results for Differences in Appearance Below the Eye

5.1.4 Motion

Of 44 AUs defined in FACS [9], six single AUs are defined in the eye region. These include AU 5 (upper lid raiser), AU
6 (cheek raiser and lid compressor), AU 7 (lid tightener, which encompasses AU 44 in the 2002 edition of FACS), AU 43
(eye closure), AU 45 (blink), and AU 46 (wink). Gaze directions are also defined as AU 61 (turn left), AU 62 (Turn
right), AU 63 (up), and AU 64 (down). Tables 8a, 8b, 8c, 8d, and 8e are correspondent with AU 5, AU 6+62, AU 6, AU
45 and AU 7, and AU 6+7, respectively, which cover the AUs related to the eye region. The frames shown range from
neutral to maximum intensity of the AUs. A most likely failure due to appearance changes by the motion of an eye would
be that tracking of the upper eyelid and the lower eyelid fails when the distance between them closes, such as in blinking
(AU45). Our system tracked blinking well, as shown in Table 8. Tracking eye motion by matching an eye region
increased system robustness relative to individually tracking feature points (such as in [3], [22], [30], [31]) or using a
generic eye model. Studies [22], [32] that have used parabolic curves to represent eye shape have been less able to
represent skewed eyelid shapes. Our model explicitly parameterizes skewing in the upper eyelid model; accordingly, the
system was able to track such skewing upper eyelids in their motions as shown in Tables 8b and 8d. 

TABLE 8. Example Results for Motions

5.1.5 Failure

Iris localization failed in a Caucasian female who had a bright iris with strong specular reflection and a thick and bold
outer eye corner. Fig. 9 shows the error. While the eyelids were correctly tracked, the iris model mistakenly located the
iris at the dark eye corner. Failure to correctly model the texture inside the iris appeared to be the source of this error. To
solve this problem in future work, we anticipate that recurrently incorporating the appearance of the target eye region into
the model during tracking would be effective and, more generally, would improve ability to accommodate unexpected
appearance variation. 
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Fig. 9. A failure case with a bright and specular iris. The dashed circle indicates the correct position manually labeled and
the solid circle system's output. The eyelids were correctly tracked, whereas the iris mistakenly located at the dark eye
corner.

5.2 Quantitative Evaluation

To quantitatively evaluate the system's accuracy, we compared the positions of the model points for the upper and lower
eyelids and the iris center (${\bf{u}}_1$ , ${\bf{l}}_1$ , $\eta_x$ , and $\eta_y$ in Table 1, respectively) with ground 
truth. Ground truth was determined by manually labeling the same number of points around the upper and lower eyelids
and the iris center using a computer mouse. These points then were connected using polygonal curves. We then computed
the Euclidean distance from each of the model points to the closest line segment between manually labeled points. If
model points were located horizontally outside of the eye, the line segment from the closest manually labeled endpoint
was used. For the iris center, the Euclidean distance to the manually labeled iris center was computed. The Euclidean
distances were normalized by dividing them by the width of the eye region. The vector of tracking errors is denoted as
vector $\varepsilon$ . 

5.2.1 Sensitivity to Input Image Size and Sharpness

When the size of the input eye region is small relative to the actual size of the eye or the input image is not sufficiently
sharp, the fine structure of the eye may not be sufficiently visible. Image sharpness refers to large gain in the
high-frequency components of an image. To evaluate system robustness to input image size and sharpness, we compared
tracking error with respect to multiple sizes and sharpness of input eye region images. Sharpness of the input images was
sampled by applying a high pass filter to the image sequences. We selected for analysis nine sequences based on the
response: three sequences that had the strongest response, three the weakest, and three in halfway between these. To vary
image size, we resampled the images into make three levels: the original scale, 50 percent scale ($0.5 \times 0.5$ ), and 
quarter scale ($0.25 \times 0.25$ ). Eye motion tracking in the smaller scales used the same structure parameters as those
used in the original scale. Table 9 shows an example of multiple scales of a particular eye region image. The table also
shows the computation time for updating the model parameters (Pentium M, 1.6GHz, 768MB RAM, Windows XP, the
average over 10 time trials). Fig. 10 shows the tracking error plotted against the widths of the image sequences. Tracking
error up to about 10 percent of eye region width may have resulted from error in manual labeling. The most likely cause
of small error in manual labeling was ambiguity of the boundary around the palpebral fissure (Fig. 11). We found that an 
eye region width of about 15 pixels was the margin under which tracking became impaired for the upper eyelid, lower
eyelid, and the iris position. Above this value, performance was relatively robust with respect to both size and sharpness
of the input eye region. 

TABLE 9. Computation Time for Multiple Image Resolution

Fig. 10. Sensitivity to image resolution. (a) Tracking error for the upper eyelid. (b) Tracking error for the lower eyelid.
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(c) Tracking error for the iris center.

Fig. 11. An example of ambiguous boundaries around the palpebral fissure.

5.2.2 Effect of Eye Model Details

The eye region model defines many structural components to represent the diversities of eye structure and motion. To
investigate whether all are necessary, we systematically omitted each component and examined the resulting change in
tracking error. Table 10 shows the results of this comparison. When the model for double eyelid folds was omitted,
tracking of the upper eyelid (Table 10a) was compromised. Omitting components for the appearance below the eye
(Table 10b) and only the brightness region on the bulge (Table 10c) had similar effects. To achieve accurate and robust
eye motion tracking for diverse eye appearances and motion, all the detailed components of the eye region model proven
necessary. 

TABLE 10. Different Levels of Detail of the Model and Their Effects

In Table 10a, the tracking error $\epsilon$ shows that tracking of the other parts of the eye model was also compromised
without the model for double eyelid folds (the error for the upper eyelid curve ${\bf{u}}_1$ , the lower eyelid curve 
${\bf{l}}_1$ , and the iris center $\eta_x$ and $\eta_y$ are shown in parentheses). This indicates that the model
components support tracking accuracy as a whole and erroneous individualization of one component affected tracking
accuracy of the other parts. 

5.2.3 Sensitivity to Model Initialization

The eye region model is manually initialized in the first frame with respect to both the structure parameters s and the
motion parameters ${\bf{m}}_t$ . We observed that the initialization of the structure parameters (individualization of the
model) dominantly affected the tracking results. To evaluate sensitivity of the system to initialization, we individually
manipulated each structure parameter in turn while leaving the others fixed. Fig. 12b is the eye region model 
individualized to an example of input eye region images shown in Figs. 12a and 12c shows changes in tracking error 
when parameter $d_u$ was varied from 0.0 to 1.0 while leaving other parameters fixed to $f=0.7$ , $d_b=0.71$ , 
$d_r=0.7$ , $r_i=0.5$ , and $I_{r 7}=0.7$ . Figs. 12d, 12e, 12f, 12g, and 12h were similarly obtained. Each of the
individualized structure parameters that provided stable tracking also locally minimized the tracking error. Only the
parameter $d_r$ was sensitive to the initialization in this particular example (the tracking error rapidly increased for the
slight change of $d_r$ ). We also observed that parameters were intercorrelated. Fig. 13 shows a contour plot of tracking 
error against the changes of an example pair of structure parameters for the same image sequence used in Fig. 12. 
Nonlinearity is obvious, yet with weak linearity.
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Fig. 12. An example of individualization of the model and the sensitivity to the parameter
changes. (a) Input eye region image. (b) Individualized eye model ${\bf{s}} = 
\{d_u,f,d_b,d_r,r_i,I_{r 7}\} = \{0.5, 0.7, 0.71, 0.7, 0.5, 0.7\}$ . (c) Sensitivity to parameter 
$d_u$ . (d) Sensitivity to parameter $f$ . (e) Sensitivity to parameter $d_b$ . (f) Sensitivity to 
parameter $d_r$ . (g) Sensitivity to parameter $r_i$ . (h) Sensitivity to parameter $I_{r 7}$ .

Fig. 13. A contour plot of tracking error against an example pair of the structure parameters: the intensity ratio of the iris
model $I_{r 7}$ versus the distance ratio between eyelid folds $d_u$ . The other parameters were left fixed. The brighter
region indicates larger error. White lines are the values individualized in Fig. 12.
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6. Conclusion 
The appearance of the eyes varies markedly due to both individual differences in structure and the motion of the eyelids
and iris. Structural individuality includes the size and color of the iris, the width, boldness, and number of eyelid folds,
the width of the bulge below the eye, and the width of the illumination reflection on the bulge. Eye motion includes the
up-down action of the upper and lower eyelids and the 2D movement of the iris. This variation together with
self-occlusion and change of reflection and shape of furrows and bulges has made robust and precise analysis of the eye
region a challenging problem. To meticulously represent detailed appearance variation in both structural individuality and
eye motion, we developed a generative eye-region model and evaluated its effectiveness by using it to analyze a large
number of face image sequences from two independent databases. The use of the detailed model led to better results than
those previously reported. The system achieved precise tracking of the eyes over a variety of eye appearances and
motions. Future work includes initialization of the eye region model by automatic registration.

Back to Top

Acknowledgments 
The authors would like to thank Jessie Van Swearingen and Karen L. Schmidt for their insights on the anatomy of the
eyes and Zara Ambadar, Nicki Ridgeway, Camilla Kydland, Lindsey Morris, and Simon Cohn for technical assistance.
This work was supported by grants R01 MH51435 from the US National Institutes of Mental Health. T. Moriyama and J.
Xiao were with Carnegie Mellon University, Pittsburgh, Pennsylvania.

T. Moriyama is with the Department of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku,
Yokohama-shi, Kanagawa 223-8522 Japan. E-mail: moriyama@ozawa.ics.keio.ac.jp.

T. Kanade is with the Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA
15213-3890. E-mail: tk@cs.cmu.edu.

J. Xiao is with the Epson Palo Alto Laboratory, Epson Research and Development, Inc., Palo Alto, CA 94304.
E-mail: xiaoj@erd.epson.com.

J.F. Cohn is with University of Pittsburgh, 4327 Sennott Square, Pittsburgh, PA 15260. E-mail:
jeffcohn@pitt.edu.

Manuscript received 4 Jan. 2005; revised 1 Aug. 2005; accepted 6 Sept. 2005; published online 13 Mar. 2006.

Recommended for acceptance by J. Goutsias.

For information on obtaining reprints of this article, please send e-mail to: tpami@computer.org, and reference



Meticulously Detailed Eye Region Model and Its Application to Analysis... file:///D:/EndNotesData/Emotion-Converted.Data/PDF/TPAMI%20Publ...

15 of 17 2/24/2008 9:30 PM

IEEECS Log Number TPAMI-0008-0105.

Back to Top

References 
[1] A. Kapoor, Y. Qi, and R.W. Picard, "Fully Automatic Upper Facial Action Recognition," Proc. IEEE Int'l 

Workshop Analysis and Modeling of Faces and Gestures, pp. 195-202,Oct. 2003. 
[2] T. Moriyama, T. Kanade, J.F. Cohn, J. Xiao, Z. Ambadar, J. Gao and H. Imamura, "Automatic Recognition of Eye

Blinking in Spontaneously Occurring Behavior," Proc. IEEE Int'l Conf. Pattern Recognition, pp. 78-81,Aug. 2002.
[3] Y. Tian, T. Kanade, and J.F. Cohn, "Recognizing Action Units for Facial Expression Analysis," IEEE Trans. 

Pattern Analysis and Machine Intelligence, vol. 23,no. 2, pp. 97-115,Feb. 2001.
[4] Y. Matsumoto, T. Ogasawara, and A. Zelinsky, "Behavior Recognition Based on Head Pose and Gaze Direction

Measurement," Proc. IEEE/RSJ Int'l Conf. Intelligent Robots and Systems, pp. 2127-2132, 2000. 
[5] J. Zhu and J. Yang, "Subpixel Eye Gaze Tracking," Proc. IEEE Int'l Conf. Automatic Face and Gesture

Recognition, pp. 131-136,May 2002. 
[6] J.G. Wang and E. Sung, "Study on Eye Gaze Estimation," IEEE Trans. Systems, Man, and Cybernetics, Part B,

vol. 32,no. 3, pp. 332-350, 2002. 
[7] K. Fukuda, "Eye Blinks: New Indices for the Detection of Deception," Psychophysiology, vol. 40,no. 3, pp.

239-245, 2001. 
[8] R. Gross, J. Shi, and J. Cohn, "Quo Vadis Face Recognition?" Proc. Third Workshop Empirical Evaluation

Methods in Computer Vision,Dec. 2001. 
[9] Facial Action Coding System. P. Ekman et al., eds., Research Nexus, Network Research Information, Salt Lake

City, Utah, 2002. 
[10] P. Ekman and E. Rosenberg, What the Face Reveals, second ed. New York: Oxford Univ. Press, 1994.
[11] S.B. Gokturk, J.Y. Bouguet, C. Tomasi and B. Girod, "Model-Based Face Tracking for View-Independent Facial

Expression Recognition," Proc. IEEE Face and Gesture Conf., pp. 272-278, 2002. 
[12] M. Pantic and L.J.M. Rothkrantz, "Automatic Analysis of Facial Expression: The State of the Art," IEEE Trans. 

Pattern Analysis and Machine Intelligence, vol. 22,no. 12, pp. 1424-1445,Dec. 2000. 
[13] I. Ravyse, H. Sahli, and J. Cornelis, "Eye Activity Detection and Recognition Using Morphological Scale-Space

Decomposition," Proc. IEEE Int'l Conf. Pattern Recognition, vol. 1, pp. 5080-5083, 2000. 
[14] S.H. Choi, K.S. Park, M.W. Sung and K.H. Kim, "Dynamic and Quantitative Evaluation of Eyelid Motion Using

Image Analysis," Medical and Biological Eng. and Computing, vol. 41,no. 2, pp. 146-150, 2003. 
[15] R. Herpers, M. Michaelis, K.H. Lichtenauer and G. Sommer, "Edge and Keypoint Detection in Facial Regions,"

Proc. IEEE Face and Gesture Conf., pp. 212-217, 1996.
[16] H. Chen, Y.Q. Yu, H.Y. Shum, S.C. Zhu and N.N. Zheng, "Example Based Facial Sketch Generation with

Non-Parametric Sampling," Proc. IEEE Int'l Conf. Computer Vision, vol. 2, pp. 433-438, 2001. 
[17] S.P. Lee, J.B. Badler, and N.I. Badler, "Eyes Alive," Proc. Int'l Conf. Computer Graphics and Interactive

Techniques, pp. 637-644, 2002. 
[18] X. Xie, R. Sudhakar, and H. Zhuang, "On Improving Eye Feature Extraction Using Deformable Templates,"

Pattern Recognition, vol. 27,no. 6, pp. 791-799,June 1994.
[19] J. Deng and F. Lai, "Region-Based Template Deformable and Masking for Eye-Feature Extraction and

Description," Pattern Recognition, vol. 30,no. 3, pp. 403-419,Mar. 1997.
[20] G. Chow and X. Li, "Towards a System for Automatic Facial Feature Detection," Pattern Recognition, vol. 26,no. 

12, pp. 1739-1755,Dec. 1993. 
[21] A. Yuille, D. Cohen, and P. Hallinan, "Feature Extraction from Faces Using Deformable Templates," Int'l J. 

Computer Vision, vol. 8,no. 2, pp. 99-111,Aug. 1992.
[22] Y. Tian, T. Kanade, and J.F. Cohn, "Eye-State Detection by Local Regional Information," Proc. Int'l Conf. 

Multimodal User Interface, pp. 143-150,Oct. 2000.
[23] L. Sirovich and M. Kirby, "Low-Dimensional Procedure for the Characterization of Human Faces," J. Optical 

Soc. of Am., vol. 4, pp. 519-524, 1987.
[24] M.A. Turk and A.P. Pentland, "Face Recognition Using Eigenfaces," Proc. IEEE Conf. Computer Vision and

Pattern Recognition, pp. 586-591, 1991. 
[25] I. King and L. Xu, "Localized Principal Component Analysis Learning for Face Feature Extraction," Proc. 

Workshop 3D Computer Vision, pp. 124-128, 1997.
[26] J. Xiao, T. Moriyama, T. Kanade and J.F. Cohn, "Robust Full-Motion Recovery of Head by Dynamic Templates

and Re-Registration Techniques," Int'l J. Imaging Systems and Technology, vol. 13, pp. 85-94,Sept. 2003.
[27] B.D. Lucas and T. Kanade, "An Iterative Image Registration Technique with an Application to Stereo Vision,"

Proc. Int'l Joint Conf. Artificial Intelligence, pp. 674-679, 1981. 
[28] T. Kanade, J.F. Cohn, and Y. Tian, "Comprehensive Database for Facial Expression Analysis," Proc. IEEE Face 

and Gesture Conf., pp. 46-53, 2000. 
[29] P. Ekman, J. Hagar, C.H. Methvin and W. Irwin, "Ekman-Hagar Facial Action Exemplars," Human Interaction

Laboratory, Univ. of California, San Francisco: unpublished data.
[30] M. Pantic and L.J.M. Rothkrantz, "Expert System for Automatic Analysis of Facial Expression," Image and 

Vision Computing, vol. 18,no. 11, pp. 881-905,Aug. 2000.
[31] J.J. Lien, T. Kanade, J.F. Cohn and C. Li, "Detection, Tracking, and Classification of Subtle Changes in Facial



Meticulously Detailed Eye Region Model and Its Application to Analysis... file:///D:/EndNotesData/Emotion-Converted.Data/PDF/TPAMI%20Publ...

16 of 17 2/24/2008 9:30 PM

Expression," J. Robotics and Autonomous Systems, vol. 31, pp. 131-146, 2000. 
[32] Active Vision. A. Blake and A. Yuille eds., chapter 2, pp. 21-38, MIT Press, 1992.

Tsuyoshi Moriyama received the PhD degree in electrical engineering from Keio University, Japan, in 1999. He is an
assistant professor in the Department of Information and Computer Science at Keio University. After being a JSPS
research fellow at Institute of Industrial Science at the University of Tokyo, Japan, and a postdoctoral fellow at the
Robotics Institute at Carnegie Mellon University, he joined Keio University in 2004. He has worked in many projects
involved with multidisciplinary areas, including analysis/synthesis of emotional speech, automated summarization of
movies, and automated facial expression analysis on computer vision. In addition to research activities, he has also
dedicated himself to musical activities as a tenor, including performances with the Wagner Society Male Choir of Japan
1990-2000 and the Pittsburgh Camerata 2001-2003. He is a member of the IEEE and a member of the IEICE of Japan. He
received IEICE Young Investigators Award 1998.

Takeo Kanade received the PhD degree in electrical engineering from Kyoto University, Japan, in 1974. He is a UA
Helen Whitaker University Professor of Computer Science and Robotics at Carnegie Mellon University. After holding a
junior faculty position in the Department of Information Science, Kyoto University, he joined Carnegie Mellon
University in 1980, where he was the director of the Robotics Institute from 1992 to 2001. Dr. Kanade has worked in
multiple areas of robotics: computer vision, multimedia, manipulators, autonomous mobile robots, and sensors. He has
written more than 250 technical papers and reports in these areas and has more than 15 patents. He has been the principal
investigator of more than a dozen major vision and robotics projects at Carnegie Mellon. He has been elected to the
National Academy of Engineering and to American Academy of Arts and Sciences. He is a fellow of the IEEE, a fellow
of the ACM, a founding fellow of the American Association of Artificial Intelligence (AAAI), and the former and
founding editor of the International Journal of Computer Vision. He has received several awards, including the C & C
Award, Joseph Engelberger Award, Allen Newell Research Excellence Award, JARA Award, Marr Prize Award, and
FIT Funai Accomplishment Award. Dr. Kanade has served on government, industry, and university advisory or
consultant committees, including Aeronautics and Space Engineering Board (ASEB) of National Research Council,
NASA's Advanced Technology Advisory Committee, PITAC Panel for Transforming Healthcare Panel, the Advisory
Board of Canadian Institute for Advanced Research.

Jing Xiao received the BS degree in electrical engineering from the University of Science and Technology of China in
1996, the MS degree in computer science from the Institute of Automation, Chinese Academy of Science in 1999, and the
PhD degree in robotics from the Robotics Institute, Carnegie Mellon University in 2005. His research interests include
computer vision, pattern recognition, image processing, human computer interface, computer animation, and related
areas. He has authored or coauthored more than 30 publications in these areas. He is a member of the IEEE.



Meticulously Detailed Eye Region Model and Its Application to Analysis... file:///D:/EndNotesData/Emotion-Converted.Data/PDF/TPAMI%20Publ...

17 of 17 2/24/2008 9:30 PM

Jeffrey F. Cohn earned the PhD degree in clinical psychology from the University of Massachusetts in Amherst. He is a
professor of psychology and psychiatry at the University of Pittsburgh and an Adjunct Faculty member at the Robotics
Institute, Carnegie Mellon University. For the past 20 years, he has conducted investigations in the theory and science of
emotion, depression, and nonverbal communication. He has co-led interdisciplinary and interinstitutional efforts to
develop advanced methods of automated analysis of facial expression and prosody and applied these tools to research in
human emotion and emotion disorders, communication, biomedicine, biometrics, and human-computer interaction. He
has published more than 120 papers on these topics. His research has been supported by grants from the US National
Institutes of Mental Health, the US National Institute of Child Health and Human Development, the US National Science
Foundation, the US Naval Research Laboratory, and the US Defense Advanced Research Projects Agency. He is a
member of the IEEE and the IEEE Computer Society.

Usage of this product signifies your acceptance of the Terms of Use.
Send general comments and questions about the IEEE Computer Society's Web site to help@computer.org.
This site and all contents (unless otherwise noted) are Copyright © 2006, IEEE, Inc. All rights reserved.


